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Abstract
A methodology is presented for quantifying the effect of SETs in bipolar 

linear microcircuits on the response of modules or sub-systems where they are 
used.  The methodology follows the format of the piece-part hardness 

assurance approach described in MIL-HDBK-814.
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Motivation

Analog single event transients (ASETs) 
in bipolar linear circuits from heavy ion (HI) 
strikes can cause failure in space systems.  
A methodology is needed to address 
piece-part hardness assurance for this 
effect.  The DTRA ASET program has 
developed a methodology which is 
presented here.    



Background

• ASETs have been studied and characterized since 1993 (Koga, 
et al TNS 93) 

• Many bipolar linear circuits are susceptible to ASETs as 
presented in a data compendium (Savage, et al IEEE NSREC 
Data Workshop 01)

• The DTRA ASET program has performed detailed investigations 
of the mechanisms of ASETs using extensive circuit simulations 
and heavy ion accelerator, micro-beam and laser testing

• A hardness assurance methodology for ASETs was presented 
by Marec, et al at RADECS 01

• A generic piece-part hardness assurance methodology was 
developed by DTRA in the 1980s through the SPWG and is 
detailed in Military Handbooks

• With minor modifications this methodology can be used for space 
system piece-parts including parts susceptible to ASETs
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Marec, et al method
• Approach uses a combination of worst case analysis and 

laser tests if HI data not available for specific application
• Worst case analysis based on maximum amplitude and 

pulse width of SET observed for different categories of 
part types
– Rail to rail voltage amplitude
– 10 µs max PW for comparators
– 20 µs max PW for op amps

• 80-90 % of cases eliminated on basis of worst case 
analysis

• Recent data have shown that the maximum SET pulse 
width can far exceed to values used by Marec, et al 
invalidating this worst case analysis
– OP293- up to 500 µs (Ladbury and Kim, NASA report 02)
– RH1014- up to 280 µs (Larsson, et al RADECS 03) 
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Categorization
• Categorization based on radiation design margin- RDM
• RDM normally defined as mean radiation failure level of 

part divided by system radiation specification level
• Categories

– Hardness non-critical (HNC)- no further tests or analysis
– Hardness Critical Category (HCC) 

• HCC1-lot sample testing required
• HCC2- periodic lot sample testing (does not apply to space systems)

– Not acceptable- RDM must increase before part can be used
• Two methods for determining in which category a part is 

placed based on value of RDM
– Design Margin breakpoint method- DMBP
– Part Categorization Criterion- PCC      



RDM for ASETs
• For ASETs the normal definition of RDM is not useful
• The definition of RDM proposed for ASETs is the ratio of 

maximum allowable error rate (specified by SPO) to 
mean part type error rate for system application and 
mission environment

• The system specified maximum allowable error rate 
requires a probability of survival, Ps, and a confidence 
level, C (often 0.9)

• The following information is required to determine the 
ASET RDM for a part
– Definition of failure- minimum amplitude and pulse width of SET 

that would cause failure for the system application of the part 
– SET cross section vs LET for SET failure pulses
– System mission parameters
– Equivalent shielding between part and free field environment 
– Computer code to calculate error rate from mission parameters, 

device data and effective shielding 



Example of failure definition (Boulghassoul, et al RADECS 03)

• Circuit for monitoring the power distribution in a satellite
• Bipolar circuits are LM124 and OP27-1 for current limiters and OP27-2 for current 

sensor
• Micro-models used to generate SET pulses and macro-models used for other 

circuits
• Failure occurs if transient at output 1 or 2 exceeds 1.25 V for 6 µs



ASET Data analysis

• SET cross 
sections vs. LET 
are mapped 
according to 
peak amplitude 
and pulse width

• Example shows 
contours for 
pulse amplitude

• Integrated with 
pulse width 
contour to 
determine failure 
σ vs. LET

LET (MeV/mg/cm2)
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Error rate calculations 
- cosmic ray environment calculated with CRÈME
- integral LET spectrum (Z=1 to Z=92)
- interplanetary weather index M=3 
- SET rate calculation using Weibull fit and PROFIT

inclination



HI data vs. laser data

• The laser has been shown to be a very effective 
tool for identifying the various SET waveforms 
that can be generated in a circuit

• If there are no HI data then the laser can be 
used to establish the worst case SET waveforms

• If the worst case SETs are below the failure SET 
then the part is HNC

• If the worst case SETs meet the failure criterion 
then HI data are required to establish the σ vs. 
LET response



Circuit simulations
• The DTRA ASET program has shown that SPICE circuit 

simulations can be used to accurately generate the SET 
response

• Very detailed circuit models (micro-models) are required 
and they must be validated with laser and HI data

• Validated SPICE micro-models can be used to explore 
worst case bias conditions and to generate SET 
waveforms for determining failure criteria of the 
application circuit

• SPICE macro-models can be used for determining the 
application circuit response for circuits not generating the 
SET      



Categorization
• Design margin breakpoint- DMBP

– Fixed breakpoints
– Used for systems with 

moderate requirements
• Part Categorization Criteria- PCC

– Based on statistics
– Parametric distribution usually 

assumed (often lognormal)
• Sample must be representative of 

flight parts

HNCHCCUnacceptable

10(?) < RDM2 ≤ RDM ≤ 10(?)RDM < 2

PCC = exp[KTL*sln(ER)]

KTL one sided tolerance factor
sln(ER)- sample standard deviation
of the ln of the error rates

HNCHCCUnacceptable

PCC < RDM2 ≤ RDM ≤ PCCRDM < 2



Unacceptable parts

• Substitute a different part type or the same 
part from a different manufacturer

• Increase the RDM
– Re-evaluate shielding
– Re-measure part with less conservative test 

conditions
– Re-design application circuit to relax failure 

criterion
– Reconsider maximum allowable error rate



Lot sample tests

• All HCC parts must be given a radiation lot 
sample test (RLAT)

• There are two test methods for RLAT
– Attributes- go/no-go test
– Variables data

• Variables data test is required for ASET 
since an error rate must be determined 



Example RLAT test

• Assume max ER is 1/100 years for Ps=0.999 
and C=0.9

• Assume that failure criteria is 1.25V for 6 µµµµs
• Assume part is OP27, 5 samples, and data 

have been fit to a Weibull curve. ER has 
been calculated using the mission 
parameters and effective shielding

• Assume log normal distribution for ER

Sample # 1/ER ordered n/(N+1) ln(1/ER) NORMSINV
(years) 1/ER

1 225 186 0.17 5.23 -0.97
2 210 196 0.33 5.28 -0.43
3 196 210 0.50 5.35 0.00
4 186 225 0.67 5.42 0.43
5 241 241 0.83 5.48 0.97

mean 5.35
stdev 0.10
KTL 6.11
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Since exp(mean-stdev*KTL) =112 years, the lot passes
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